Mining Mobile Group Patterns: A Trajectory-Based Approach
نویسندگان
چکیده
In this paper, we present a group pattern mining approach to derive the grouping information of mobile device users based on a trajectory model. Group patterns of users are determined by distance threshold and minimum time duration. A trajectory model of user movement is adopted to save storage space and to cope with untracked or disconnected location data. To discover group patterns, we propose ATGP algorithm and TVG-growth that are derived from the Apriori and VG-growth algorithms respectively.
منابع مشابه
High Fuzzy Utility Based Frequent Patterns Mining Approach for Mobile Web Services Sequences
Nowadays high fuzzy utility based pattern mining is an emerging topic in data mining. It refers to discover all patterns having a high utility meeting a user-specified minimum high utility threshold. It comprises extracting patterns which are highly accessed in mobile web service sequences. Different from the traditional fuzzy approach, high fuzzy utility mining considers not only counts of mob...
متن کاملUnderstanding Temporal Human Mobility Patterns in a City by Mobile Cellular Data Mining, Case Study: Tehran City
Recent studies have shown that urban complex behaviors like human mobility should be examined by newer and smarter methods. The ubiquitous use of mobile phones and other smart communication devices helps us use a bigger amount of data that can be browsed by the hours of the day, the days of the week, geographic area, meteorological conditions, and so on. In this article, mobile cellular data mi...
متن کاملMining moving objects trajectories in Location-based services for spatio-temporal database update
Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-featur...
متن کاملTrajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملRoute Pattern Mining From Personal Trajectory Data
The discovery of route patterns from trajectory data generated by moving objects is an essential problem for location-aware computing. However, the high degree of uncertainty of personal trajectory data significantly disturbs the existing route pattern mining approaches, and results in finding only short and incomplete patterns with high computational complexity. In this paper, we propose a per...
متن کامل